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Photoadditions of phenylacetates to phthalimides give the corresponding benzylated hydroxyphthalim-
idines in moderate to high yields of 29–90%. With 2-phenylpropanoate, photoaddition affords a
diastereoisomeric mixture in a de of 24% in favour of the like-diastereoisomer. L-3-Phenyl lactate and
2-oxo-3-phenylpropanoate both furnish the benzylated product through subsequent loss of formalde-
hyde and decarbonylation, respectively.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1. Examples of arylmethylene-isoindolin-1-ones.
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Due to their favourable photophysical and electrochemical
properties, phthalimides are superior substrates for photoinduced
electron transfer reactions.1 As an example, the photodecarboxyla-
tive (PDC) addition of carboxylates, a-keto carboxylates and
heteroatom-substituted carboxylates to phthalimides has been
established as a powerful alkylation method.2 Multi-gram scale
alkylations have furthermore, been realised using a 308 nm exci-
mer light source.3 Of these, the photodecarboxylative benzylation
has been applied to the synthesis of open analogues of aristolac-
tams (I; Fig. 1).4,5 Arylmethylene-isoindolin-1-ones (II) represent
an important class of pharmaceutically active compounds6 and,
as example, the 4-acetoxyphenylmethylene derivative III has been
shown to exhibit local anaesthetic activity superior to that of
procaine.7

We thus became interested in the photobenzylation of phthali-
mides as an easy access to novel arylmethylene-isoindolin-1-one
precursors. N-Methylphthalimide 1 was initially chosen as a model
compound for a detailed laboratory study. When 1 was irradiated
for 1–5 h in the presence of three equivalents of different potas-
sium phenyl acetates 2a–m in acetone-water (50:50), the corre-
sponding addition products 3a–m were obtained in moderate to
high yields of 29–90% (Scheme 1, Table 1).8 Likewise, vinyl acetate
2n gave the allylated product 3n in an acceptable yield of 26%. For
all compounds, the characteristic C–OH signals in the 13C NMR
spectra were found around 90 ppm. In some cases, the correspond-
ing ‘simple’ decarboxylation products (-CO2HM-H exchange),
ll rights reserved.

fax: +61 (0)7 4781 6078.
(M. Oelgemöller).
that is, non-volatile toluene derivatives, were detected in small
amounts (<5%) in the crude 1H NMR spectra but no attempt was
made to isolate these by-products.

A special case was the irradiation of branched 2-phenylpropan-
oate 2k with N-methylphthalimide 1 and a diastereoisomeric mix-
ture of unlike- and like-3k was obtained in 90% yield after just two
hours of irradiation. The diastereoisomeric ratio was determined
O O
1 2a-m 3a-m

Scheme 1. Additions of phenylacetates 2a–m to 1.



Table 1
Product yields and experimental details for photodecarboxylative benzylations of 1

Ar R1 R2 h 3 (%)

a Ph H H 1 80

b H H 2 53

c
OH

H H 6 67/96a

d
OMe

H H 4 78

e
F

H H 2 36

f
Cl

H H 5 29/56b

g OMe
OMe

OMe
H H 2 50

h
Cl

Cl
H H 3 53

i
Br

H H 5 35

j
I

H H 4 51

k Ph Me H 2 90c

l Ph Ph H 3.5 46
m Ph Me Me 3.5 76
n Vinyl H H 5 26

a Yield based on a conversion of 70%.
b Yield based on a conversion of 52%.
c de of 24% in favour of the like-diastereoisomer.
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Scheme 2. Additions of 4a–c to 1.
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for the crude product by integration of baseline-separated signals
in the 1H NMR and was found to be 1:1.6 (de of 24%) in favour of
the like-diastereoisomer. Pure fractions of each diastereoisomer
were collected by column chromatography and suitable crystals
for X-ray analysis were obtained by recrystallisation (Fig. 2).9 Inter-
estingly, both compounds formed dimers between different enan-
tiomeric forms via hydrogen bonding.

After five hours of irradiation, the photoreactions involving 3-
phenylpropionate (4a), 3-(2-methoxyphenyl)propionate (4b) and
4-phenylbutanoate (4c) furnished the corresponding addition prod-
ucts 5a–c in yields of 67%, 29% and 21% (Scheme 2), respectively. In
the case of 4b, an incomplete conversion of 62% was observed and
Figure 2. Crystal structures of ul-3k and l-3k.
the ‘simple’ decarboxylation product 2-ethylanisole was addition-
ally obtained in significant quantity (composition of the crude prod-
uct: 24% 1, 40% 5b, 36% 2-ethylanisole).

The structure of product 5a was confirmed by X-ray structure
analysis.10 Remarkably, two molecules of the same enantiomer of
5a form dimers, which are connected by hydrogen bonding. A pair
with the configuration S is depicted in Figure 3. The same number
of S,S and R,R dimers are found in the crystal. Hence, the compound
crystallised as a racemate and not as a conglomerate.

Irradiation of 1 in the presence of either potassium L-3-phenyl
lactate 6 or sodium 2-oxo-3-phenylpropanoate 7 furnished the
benzylated product 3a in yields of 21% and 52%, respectively
(Scheme 3). Hence, decarboxylation is followed by the loss of form-
aldehyde11 or decarbonylation, that is, the loss of CO.12

The general protocol was furthermore applied to the glycine
derivative 8 and the benzylated products 9a and b were isolated
in yields of 60% and 63% after four hours and one hour of irradia-
tion (Scheme 4), respectively. Unlike alternative thermal additions
(e.g., Grignard reactions13), the ester group in the N-side chain was
tolerated and photoinduced-alkylation occurred regioselectively at
the imide chromophore.

The mechanistic scenario for the photoinduced-benzylation is
illustrated in Scheme 5.14 Triplet sensitisation by acetone is
followed by a single electron transfer from the carboxylate to the
triplet-excited phthalimide (path A). Although the oxidation
potentials of carboxylates are relatively high (e.g., acetate:
EOx = 1.54 V in MeCN, 2.65 V in H2O vs SCE15) both, electron trans-
fer via the excited 3p,p* triplet state (E00 = 3.1 eV) or the higher
3n,p* state (E00 � 3.6 eV), are energetically feasible.16 Subsequent
decarboxylation of the carboxy radical yields the corresponding
benzylic radical.17 Protonation, intersystem crossing and C–C bond
formation result in the desired photoaddition products. For 3,4,5-
trimethoxyphenyl acetate 2g, electron transfer has been postulated
from the electron-rich aryl group instead (path B).4 Subsequent
Figure 3. Crystal structure of 5a (dimer).
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Scheme 3. Benzylations of 1 with 6 and 7.
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loss of carbon dioxide, protonation and C-C bond formation like-
wise yields the observed addition product. For vinyl acetate 2n
both mechanistic pathways may operate in parallel.18

The efficiency of the PDC approach becomes apparent when
comparing the benzylation of phthalimides with either toluenes
or phenyl acetates, respectively. As reported by Kanaoka et al. pho-
toadditions through hydrogen abstraction give the corresponding
benzylated product in low yields and with poor selectivity and
conversions.19 In contrast, the PDC procedure developed rapidly
giving the desired benzylation products 3 in moderate to high
yields and purities. In addition, the photodecarboxylation protocol
utilises simple phenyl acetates 2. These starting materials are
easily accessible in large quantities and with broad structural
diversity, and are additionally stable in comparison to reagents
used in other thermal alkylation methods for example, SmI2-
mediated coupling of organic halides (SmI2/R–X),20 addition of
organometallic compounds (R–Mg–X or R–Li),13,21 or alkylation with
organic halides using lithium in liquid ammonia (Li/NH3/R–X),22

respectively.
In conclusion, phenylacetates efficiently undergo photodecarb-

oxylative benzylations to phthalimides. The procedure offers a
versatile access to 3-arylmethylene-isoindolin-1-ones and this
application is currently under investigation. In addition, the
simple protocol is currently being transferred to ‘micro-photochem-
istry’, that is, photochemical transformations in micro-structured
devices.23
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